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We report on a newly discovered bifurcation that occurs in dry grains flowing down
a chute with a wavy bottom. We find that the bifurcation outwardly resembles the
long-known fluid analogue of inviscid channel flow over a wavy bottom reported in
1886 by Lord Kelvin; however, in detail, the two situations differ significantly. We
compare three distinct states seen in the granular system: a ‘regular’ flow in phase
with the bottom wave; an ‘antiregular’ flow that is out of phase; and a ‘flat’ flow in
which the surface slides nearly uniformly downhill. Additionally, we discuss evidence
that sustained subsurface circulation in the granular bed, accompanied by strong
fluctuations in flow velocities, can appear in granular flows over wavy surfaces.

1. Background
Over a century ago, Lord Kelvin predicted a surface wave bifurcation for fluid

flow through a channel with a wavy bottom (Thomson 1886; Lamb 1932). This
bifurcation defines a transition between ‘regular’ flow, in which the surface is in
phase with the wavy bottom, and ‘antiregular’ flow, in which it is out of phase. Since
that time, experimental and computational studies have investigated the behaviour
of fluid flow over wavy surfaces (Krettenauer & Schumann 1992; Gong, Taylor &
Dornbrack 1996; Hudson, Dykhno & Hanratty 1996; Nakayama & Sakio 2002;
Günther & Rohr 2003), shear in this geometry (Benjamin 1958), and mechanisms of
wave generation in two-phase wavy flows (Montalbano & McCready 1998). Although
the observations made by Lord Kelvin for fluids have stood for a century, no studies
to our knowledge have investigated similar transitions in granular flow on wavy
bottoms. Yet the precise problem of granular flow over wavy and rough bottoms
is encountered in both laboratory (Takahashi 1981; Savage & Hutter 1989; Iverson
1997; Pouliquen 1999; Hanes & Walton 2000; Denlinger & Iverson 2001; Louge
2003) and geophysical debris (Hakonardottir et al. 2003; Iverson 1997) flows, and
there are theoretical suggestions from simulations of single balls bouncing down a
bumpy incline (Dippel, Bartrouni & Wolf 1996) that such transitions may occur as
well. In this paper, we perform, to the best of our knowledge, the first experimental
investigations of this problem, and we find that there is indeed a sharp transition
between regular and antiregular granular flow as the angle of the wavy chute is varied.
The granular transition differs in important ways from the fluid one, and we propose
a mechanism involving circulatory subsurface flows that seems to capture some of
the essential kinetics involved.

Studies of shear in granular materials date back at least to Bagnold’s pioneering
work on desert sand transport (Bagnold 1936), with related geophysical reports
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appearing many years before that (Bishop 1713; Lyell 1858; Hopkins 1862). More
recently, work on shear in well-instrumented cells (Rabinowicz 1956; Miller, O’Hern
1996; Menon & Durian 1997; Howell & Behringer 1999; Losert et al. 2000; Mueth
et al. 2000), chutes (Savage & Hutter 1989; Hanes & Walton 2000; Forterre &
Pouliquen 2001; Goldfarb, Glasser & Shinbrot 2002; Gray, Tai & Noelle 2003; Louge
2003) and other systems (Hsiau & Hunt 1993; Komatsu et al. 2001) has attempted to
clarify the mechanisms of granular response to controlled stresses. Notwithstanding
these investigations, granular beds often display solid-like and fluid-like qualities side-
by-side within a single experiment, and generally applicable rules underlying granular
phenomena remain elusive (several comprehensive surveys are available from a variety
of perspectives e.g. Bridgwater 1976; Savage et al. 1983; Jenkins 1986; Johnson,
Natt & Jackson 1990; Jaeger, Nagel & Behringer 1996; Iverson 1997; Goddard &
Alam 1999; Kadanoff 1999). We know that these behaviours have important practical
ramifications. On the laboratory scale, periodic disturbances of granular tumbling
flows have been shown to result in improvements in mixing rates by orders of
magnitude (Shinbrot, Alexander & Muzzio 1999), and in a provocative example on
geophysical scales, a periodic array of stone barriers have recently been erected to
dissipate the destructive force of snow avalanches in the town of Neskaupstadur
in eastern Iceland (Hakonardottir et al. 2003; Johannesson & Hakonardottir 2003).
Moreover, recent hydrodynamic treatments (Gray et al. 2003) have shown great
promise in chute flows. In the present paper, we seek to advance the understanding
of granular transitions in flows across wavy bottoms: a topic whose understanding
lags considerably behind that in the seemingly closely related field of fluid dynamics
(Hewgill, Reeder & Shinbrot 1981; Bocquet, Errami & Lubensky 2002; Hakonardottir
et al. 2003; Johannesson & Hakonardottir 2003; Silbert et al. 2003).

2. Phenomenology
As we have emphasized, fluid flows over wavy surfaces have been studied for many

years, both as paradigmatic theoretical problems and because practical systems are
seldom uniform (Iverson 1997). One such system appears in channel flow across a
wavy surface, as shown in figure 1 from a fluids experiment in our laboratory. In
fluids experiments, channel flow undergoes a hysteretic bifurcation from the ‘regular’
state at higher flow rates (figure 1a) where the fluid free surface is in phase with the
(sinusoidal) channel bottom to the ’antiregular’ state at lower flow rates (figure 1b),
where the free surface is out of phase with the channel bottom. This bifurcation
coincides with two dynamical features of interest: the first is the emergence of a
hydraulic jump (Stoker 1957) (indicated in figure 1c), the second is the creation of a
recirculation loop (also indicated) just downstream of the jump. This bifurcation is
very robust, and persists despite being removed from the ideal potential-flow limit of
vanishing viscosity (our Reynolds number is ∼100).

To investigate a granular analogue of this bifurcation, we construct a 244 cm long,
10.2 cm wide chute in which we fit a variety of amplitude and wavelength sinusoidal
bottoms. Chutes notoriously tribo-charge as dissimilar materials rub across the chute
surface (Shinbrot 1985), so the bottoms (which are cut into sinusoidal shapes from
wood slats) are covered with smooth grounded aluminium flashing to provide a
reproducible and minimally charged surface on which to perform experiments. The
sides of the chute are clear acrylic to permit us to see near-wall flows, and to further
limit charging, we apply antistatic fluid to these sides before each experimental trial. In
figure 2, we display characteristic results, here for a sinusoidal bottom with wavelength
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Figure 1. Snapshots of steady (a) ‘regular’ flow and (b) ‘antiregular’ flow of water in a
horizontal channel with a sinusoidal bottom. As indicated in (b), in the antiregular state, the
maximum of the free surface is over the minimum of the channel bottom. (c) Enlarged view
of antiregular flow showing hydraulic jump. The channel is 5 cm wide, 244 cm long and is fed
from the right; the wavelength and peak-to-peak amplitude of the sinusoidal insert are 30 cm
and 2.5 cm, respectively.

20 cm and peak-to-peak amplitude 2 cm. Art sand (coloured irregular glass grains of
mean diameter 0.5 mm) is released onto the chute from an upstream hopper whose
outlet is 10 cm above the chute surface, and whose mass flow rate is measured over a
period of minutes to remain stable at 281 ± 2 g s−1.

From this figure, we see that there is, indeed, a transition from regular (figure 2a) to
antiregular (figure 2b) flow, here as the angle of incline of the chute is reduced from
32.7◦ to 31.2◦ as measured with a digital level. As with the fluid case, there appears to
be an identifiable minimum (indicated in figure 2b) in the antiregular state, possibly
accompanied by an upstream hydraulic jump. The minimum and nearby maximum
are identified in the enlarged side view of figure 2(c). In the latter figure, we also
use two differently coloured, but otherwise identical, grains to study transport; this is
discussed in a later section.

3. Transients and final states
We performed several independent experiments to evaluate the dependencies of the

granular form of this surface-wave bifurcation. First, we measured the length of time,
τ , taken to achieve a steady final state as a function of chute inclination angle, ϑ . To
make our measurements reproducible, we opened the hopper onto a clean chute at a
fixed inclination angle, and evaluated the time taken until the central 6 wavelengths
(excluding one wavelength at the top and one at the bottom where there are some
variations due to end effects) of the chute all exhibited the same state.
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Figure 2. Snapshots of (a) ‘regular’ flow (at 32.7◦ chute inclination) and (b) ‘antiregular’ flow
(at 31.2◦ inclination) of dry sand in a tilted channel with a sinusoidal bottom. As indicated in
(b)–(c), the peak of the free surface is over the trough of the channel bottom in the antiregular
state. (c) Enlarged view of antiregular flow, showing that a portion of the bed that was
released earlier (red) is eroded more slowly than flowing grains released subsequently (blue),
which travel mostly near the surface. There appears to be a hydraulic jump between the ‘min’
and the ‘max’ arrows in (c) (see text). The channel is fed from a hopper to the right of the
photographs. The sinusoidal bottom is identified by the dashed green line.

Flow states in the wavy chute are significantly hysteretic; however, the sequence of
events that typically occurs after opening the hopper is as follows. When the hopper
is first opened, grains relax to fill the valleys of the chute. A snapshot showing this
process while it is occurring is shown in the inset in figure 3(a). In this snapshot,
grains flowing from uphill (to the right) cascade in a jet (cf. Hakonardottir et al. 2003)
over the top of an upstream sinusoidal peak to impinge on the downstream end of
the next peak (black arrowheads). The formation of a jet occurs when the inlet kinetic
energy of the flowing grains is very high (as occurs when the inlet hopper is raised);
if the kinetic energy is lower, the grains initially cover the entire chute in a uniform
blanket that gradually thickens in the troughs until the final state is reached. In the
case where a jet appears, grains in the jet fly nearly ballistically over the underlying
bed. When these grains collide with the downstream surface, they lose kinetic energy
and subsequently collapse into the nearest valley. During this collapse, the front of the
jet (indicated by arrowheads in the inset) moves downhill until the upstream valley is
filled with debris from prior collisions with the downstream surface.

At this point (which is reached either with an initial jet, or for less energetic inlet
speeds without the jet) one of three steady states emerge, depending on the chute
inclination. If the chute inclination is greater than about ϑc1 = 32.3◦, the static grains
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Figure 3. (a) Time to reach steady state vs. chute angle. The data points are averaged over
10 separate trials. Angles greater than about 32.5◦ attain the regular state almost immediately.
Coloured regions indicate flat, antiregular and regular regimes described in text; boundaries
between these regimes are precise in our experiment, but change with grain properties and
environmental conditions and should therefore be treated as approximate. The inset shows a
snapshot of the evolving flow in an antiregular state (see text). (b) Plots of fluid (solid line)
and granular (dashed) transitions between regular and antiregular flow vs. wavelength λ of
sinusoidal bottom. For the fluid case, we plot Fr = tanh(kd)/kd, where d is the depth of the
flow, taken to be 5 cm, and k is the wavenumber, 2π/λ. For the granular case, higher kinetic
energy flows stall at lower chute angle (see text), so for comparison we plot decreasing stall
angle (right-hand ordinate) alongside increasing Froude number (left-hand). Note that because
the scales are different, any agreement is at most qualitative.

in the valley are washed downstream by the continuing influx of grains flowing
downhill, to leave a regular surface. If the inclination is below this value, a more
complex flow is produced, in which the surface flows downhill but, as we demonstrate
shortly, subsurface flows recirculate (Gray et al. 2003) to produce the surface minima
shown in figure 2(b). Finally, if the chute inclination is below about ϑc2 = 31◦, the
valleys fill completely to produce a flat static bed at the height of the sinusoidal
peaks, and inflowing grains slide with nearly uniform depth and speed on this bed.

Corresponding to each of these states is a time, τ , required to reach the final state,
as we defined previously. In the main part of figure 3(a), we plot measurements
of τ at chute angles in the range 30◦–33◦. Each measurement is an average over
10 separate experimental trials. Close to the transition angle of about ϑc1 = 32.3◦,
the surface invariably starts out in a regular in-phase state. Slightly below ϑc1, the
most downstream valley fills with grains, after which the surface in that valley slowly
transitions to an antiregular state. This appears to cause grains in the next valley
upstream to slow; that valley then becomes antiregular as well, and so forth up
the chute. The regular–antiregular transition appears to display significant critical
slowing down (Howell & Behringer 1999): as the chute angle becomes closer to ϑc1,
the flow takes increasingly longer to settle into the final state reported. By contrast,
the transition between antiregular and flat surface flows around ϑc2 = 31◦ seems to
be continuous.

To aid the eye, we have correspondingly plotted in grey the function indicated
in the figure containing a tanh to fit the transition at ϑc1, and a square-root
singularity to fit the apparent slowing down (explicitly, the curve shown is:
τ = [2 − tanh(2(ϑ − ϑc1))]/2

√
|ϑ − ϑc2|). We stress that this is not a theoretical



258 C. E. Caicedo-Carvajal, B. J. Glasser and T. Shinbrot

model; the constants are chosen strictly for convenience, and we present this function
only as a curve fit that seems to define roughly the experimental phenomenology that
we observe, i.e. one smooth continuous transition at ϑc1 followed by a second showing
slowing-down at around ϑc2. We compare these phenomenological descriptions with
other data shortly.

4. Parametric dependence
In a second set of experiments, we varied the wavelength of the sinusoidal chute

bottom. We additionally investigated doubling the amplitude of the sinusoidal chute
shape; however, this had the effect of stalling all motion in the chute valleys, which
in turn eliminated the antiregular state. We therefore kept the amplitude at the
lower value of 2 cm peak-to-peak and varied the sinusoidal wavelength. Results from
these experiments are shown in figure 3(b). Here, we fabricated several sinusoidal
inserts with wavelengths ranging from 10 to 40 cm. For a given wavelength insert,
we maintained a constant inflow rate (281 ± 2 g s−1 as before), and beginning at
a steep angle, we slowly decreased the chute angle until the flow stalled. For each
of the wavelengths shown, the surface went through a regular, antiregular and flat
state as indicated in figure 3(a). These transitions are somewhat variable, as indicated
by the error bars in figure 3(a). By comparison, the stall angle, ϑs seemed to be
more reproducible and represents a fixed upper bound on the other transitions, so we
measured ϑs which is shown in figure 3(b) as a surrogate for the other transitions. Each
data point here is the average of 5 experimental trials at the specified wavelength.
The dashed curve through the data is an exponential fit that asymptotes to the
flat chute value of about 19◦ (appropriate to our chute and grains) as the wave-
length → ∞.

Also in this plot, we include a curve (solid line) of the Froude number as a function
of wavelength predicted from Kelvin’s analysis of an inviscid and irrotational fluid.
For fluid flow over a wavy bottom, the Froude number is defined in the usual way as
a ratio of kinetic to potential energies:

Frf =
v2

2gd
, (1)

where v is the mean surface velocity of the fluid, g is gravity, and d is the characteristic
depth of the flow. Kelvin (Thomson 1886; Lamb 1932) described a transition between
regular and antiregular flow at the critical Fr:

Fr∗
f =

tanh(kd)

kd
, (2)

for a sinusoidal bottom of wavenumber k. To provide a comparable hydrodynamic
treatment of our chute flow, we must define relevant kinetic and potential energies
(Gray et al. 2003). The kinetic energy per unit mass of grains can be established
directly from measurements of the granular inflow, as described below. The relevant
potential energy is not entirely unambiguous, however, since any of several length
scales could be used to calculate it. Prior work on granular flow down inclines has
shown that the maximum slope controls the speed of the flow (Savage & Hutter 1989;
Hanes & Waltor 2000; Louge 2003); this slope is closely approximated in our system
by h sin(ϑ)/λ, where h is the depth of thes inusoidal bottom, λ is its wavelength,
and ϑ is the angle of inclination of the chute. The vertical length scale that is most
germane to calculating the potential energy is thus approximately h sin(ϑ), and so we
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Figure 4. Phase diagram, showing the effect of inflow rate onto the chute and chute inclination
on the flow state. (a) Data are shown for 9 values of flow rate and 12 values of inclination,
and error bars are as shown. The transition lines are approximate; the state changes at the
nearest datum on either side of the lines. (b) For the same flow rates and inclinations, we plot
the Froude number calculated using equation (3), and we superimpose the transition curves
from (a). We also show a hatched plane at Fr = 1; above Fr = 1, hydraulic jumps cannot be
sustained, and the antiregular state (which contains a hydraulic jump, cf. figure 2c) disappears.

define the Froude number for the wavy granular flow to be:

Frs =
(Q/ρA)2

2gh sin ϑ
. (3)

Here, Q and A are, respectively, the measured mass flow rate and orifice area at the
inlet to the chute, ρ is the density (which we hold to be the bulk density of our glass
beads, 2.5 g cm−3), and g is gravity.

The chute angle, ϑ , appears in the denominator, and so Fr increases as ϑ decreases.
Correspondingly, in figure 3(b), we plot Kelvin’s analytic curve for fluids for
increasing critical Froude number (left-hand ordinate), alongside our data obtained
for grains for decreasing stall angles (right-hand ordinate). As we have stressed, the
stall angle is a convenient and reproducible surrogate for the other transitions seen,
and does not in closed form predict the critical Froude number. Nevertheless, figure
3(b) indicates that despite obvious differences between the simplified inviscid and
irrotational fluid model and the strongly dissipative (Goldhirsch & Zanetti 1993;
Du, Li & Kadanoff 1995; Henrique et al. 1998) (and as we will show, significantly
circulatory) experimental granular flow, transitions in both cases tend toward higher
kinetic energy at longer wavelength.

4.1. Phase diagrams

To explore more fully the parametric dependencies of the flow transitions in the wavy
chute, we also varied the incoming flow rate to the chute. For this purpose, we used
a wavy chute of fixed wavelength, 20 cm, and peak-to-peak amplitude, 2 cm, and we
investigated 108 parameter sets consisting of 12 chute inclinations and 9 flow rates.
Flow rates were set by inserting plates with fixed diameter orifices at the end of the inlet
hopper; for each orifice size, we measured the flow rate as before, and in figure 4(a),
we display how the flow state depends on inclination and flow rate.

The state of the flow was established in two ways. First, we determined by visual
inspection whether the free surface was in phase with the sinusoidal bottom (for



260 C. E. Caicedo-Carvajal, B. J. Glasser and T. Shinbrot

regular flow) and, if not, whether the surface had a minimum (for antiregular flow)
or not (for flat flow). Secondly, we measured the volume of grains (the ‘hold-up’)
contained in each cycle of the sinusoidal chute, which we found to be a signature
of the state that correlates strongly with visual observations. For the flat state, the
hold-up is 440 ± 20 ml; for the antiregular state the hold-up is 390 ± 20 ml; and for
the regular state, the hold-up varies between 50 ml and 150 ml, depending on flow
rate. The uncertainties are estimates based on the accuracy of measuring flow heights
(and so the hold-up) through the transparent sidewall of the chute.

From figure 4(a), we see that distinct flat, antiregular and regular states appear for
low flow rates, but at flow rates above about 500 g s−1 (point P in the figure), the
antiregular state vanishes and the flow undergoes a transition between a flat state, at
low chute angles, and a regular state, at higher angles.

By comparison, in figure 4(b), we plot the Froude number calculated using (3) as
the chute inclination and flow rate are varied. Also in figure 4(b), we plot the plane
Frs = 1 and we superimpose the states from figure 4(a). Apparently the antiregular
state disappears above point P , i.e. above about Frs = 1. The disappearance of the
antiregular state, which contains a hydraulic jump as shown in figure 2(b), is to be
expected above Fr = 1, where hydraulic jumps cannot be sustained. The source of the
λ-shaped antiregular boundary in figure 4(a, b) is not so readily explained, however.

5. Velocimetry
We therefore seek to unveil the mechanism underlying the granular transition

in greater detail. For this purpose, we have performed particle image velocimetry
(PIV) (Wightman et al. 1995), evaluating surface particle velocities in the three states
indicated in figure 3(a). These data, discussed next, confirm that the flat, antiregular
and regular states are indeed distinct, and are signatures of very different internal
mechanisms of energy dissipation in the granular flow that are not captured well
by averaged measures such as the Froude number. Results of these experiments are
shown in figure 5 for PIV taken from above in each of the three flow states. In each
plot, we show in grey the location of the sinusoidal trough beneath. Velocity fields
are averaged over 2 s (1000 high-speed video frames) in each case.

These velocimetry data provide several notable findings. First, the regular state
exhibits an increase in speed at the upstream aspect of the trough (2.8 m s−1 average
as indicated), and a decrease at the downstream aspect (1.1 m s −1). This is as expected:
in the regular state, grains follow the contour of the underlying chute (cf. figure 1a),
and accelerate in the regions of steepest gradient and slow as the gradient decreases.
The flow is qualitatively different in the antiregular state: here as shown in figure 2(b),
the flow is thin – and rapid – near the crests of the underlying chute, and is thicker –
and slower – in the troughs. The surface flow throughout the trough region is both
more uniform and substantially slower (between 0.1 and 0.5 m s−1) than in the regular
case, and flow actually accelerates (to about 0.5 m s−1) above the crest of the sinusiodal
insert.

Second, as indicated by sample numerical data above each plot in figure 5,
quantitative surface speeds are reduced by about an order of magnitude in the
antiregular state as compared to the regular state. Since mass flow rates are held
constant, this implies that the flowing layer must be an order of magnitude thicker in
the antiregular state than in the regular.

Finally, the flat state is measured to be essentially independent of location, and
by all appearances seems to consist of a slowly and uniformly sliding layer on a
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Figure 5. Surface velocity fields, averaged over 1000 frames, during (a) regular, (b) antiregular
and (c) flat flows. In the regular case, there are no surprises: flow is rapid and accelerates
upstream of valleys and slows downstream. At the other extreme in the flat case, flow is an
order of magnitude slower, and, since valleys are filled with stalled grains, is very uniform. In
the intermediate antiregular state, surface flow speeds are locally variable, and sometimes even
display circulatory eddies as in the enlarged inset. Note from the identified speeds that colour
scales differ in the three cases.

Flow direction(a) (b)
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Figure 6. (a) Snapshots of the trough through the transparent sidewall of the chute at the
third trough from the top during antiregular flow in a two-colour sand experiment. The
sequence of flow is shown from top to bottom as time progresses. There is an intermittent
behaviour in the penetration of blue sand into the initially flowing red sand. Enlarged views
shown in (b) and (c) suggest subduction of the red sand in multiple recirculation loops,
indicated by arrows.

flat stationary bed that is formed when the sinusoidal troughs fill with static grains.
Noting again that the mass flow rate is held fixed in all three cases, we can use
the flat state to serve as a point of reference for the regular and antiregular states.
That is, the regular steady flow must be much thinner than the flat state in order to
conserve mass, and by the same token in the antiregular state, the surface height is
nearly identical to that in the flat state, so the spatially averaged flow speed must be
the same in the two states, i.e. about 0.2 m s−1. Since most of the surface flow above
the crest in the antiregular state is at a lower speed (about 0.1 m s−1 as indicated), it
follows that above the crest there must be local regions that travel significantly faster.

Thus, mass conservation implies that in the example shown in figure 5, there
must be a confined high-speed jet passing over the crest in the antiregular state (cf.



262 C. E. Caicedo-Carvajal, B. J. Glasser and T. Shinbrot

figure 3a) inset). This jet is manifested in a localized higher-speed region (0.5 m s−1

indicated) and additionally as this jet enters the slower-moving flow near the trough,
it appears to produce a circulatory flow, as shown in the enlarged inset. PIV data
here clearly confirm that circulation is present in the antiregular state, whereas we
have never witnessed such a circulatory flow in our experiments of the flat or regular
states. We remark that the locations of the jet and the presence of circulation are
themselves variable: in some PIV experiments, surface eddies are seen and in others
they are not. Additionally, it seems likely that the eddies that we saw are a function
of the width of our chute, and results may differ in significantly wider (or narrower)
chutes. The examples shown in figure 5 were chosen to be representative of typical
flows that we observe in our experiments.

To summarize, in the regular state, we see rapid non-circulatory flow that accelerates
downstream of the sinusoidal crest and slows upstream. In the antiregular state, we see
localized high-speed flows embedded in a slowly moving mass. We also see circulatory
flow: this flow is variable, but it seems consistent to surmise that circulation may be
generated by strong upstream velocity gradients associated with jets of granular flow
over the sinusoidal crest. In the flat flow state, we see nearly uniform velocities that
seem consistent with the picture of a sliding layer on a static bed that fills up the
sinusoidal troughs. This flow differs qualitatively from the antiregular flow both in
asymptotic approach (figure 3a) and in that flow in the trough is not static in the
antiregular state. This is evidenced from three sources: from external observations
through the transparent side of the chute; from PIV data indicating much slower
(and therefore thicker) surface flow above the trough in the antiregular state than in
the regular; and from transport determinations, discussed next.

Since grains appear to flow and circulate in the troughs of the antiregular state,
we are prompted to raise the obvious question: what is going on in the troughs? In
the next section, we explore this issue by examining Lagrangian transport of grains
through the trough.

5.1. Transport

Grains tend to move slowly and irregularly near the sidewalls, and so PIV taken
from the side is not revealing; instead we study complex vertical particle motions
by freezing the granular bed after releasing alternate streams of red and blue sand
down the sinusoidal chute. We perform these experiments as follows. We position the
chute at 31.5◦, so as to establish antiregular flow (cf. figure 3a). We insert a stoppered
funnel containing blue sand into the inlet hopper, which we then fill with identical
but red sand. This smaller funnel outlet completely blocks the hopper outlet so that
no sand flows while the smaller funnel stopper is in place. We initiate flow by pulling
the stopper, and when the blue grains are almost exhausted, we rapidly remove the
smaller funnel, permitting red grains to flow. We use enough blue grains to fully
establish steady antiregular flow, and in this way, we input a uniform flow of grains
that abruptly changes from blue to red.

As a first example illustrating the flow dynamics, in figure 6(a), we show successive
snapshots taken from the side of the chute in the antiregular state. The blue grains
have occupied the trough and the red grains are seen to penetrate into the bed from
the top as time evolves. In the enlarged views in figures 6(b) and 6(c), we see that the
mechanism of this penetration is that the bed overturns, subducting the red grains in
recirculating loops (indicated by arrows). Two such recirculation loops are evident in
figure 6(c): a downstream loop dominated by blue grains and outlined by a thin strip
of red, and an upstream loop dominated by red grains that encircle a central blue
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Figure 7. (a) Snapshot from the bottom of a trough after the flow has been stopped, the bed
has been frozen (see text), and the solidified bed has been removed from the chute. Curved
‘surrideo’ shapes are evident: the dashed curve is the quartic function used in equations
(4)–(5). (b) Solidified bed removed from the seventh trough downstream. This section of bed
has been cut to expose the internal structure. (c) Enlarged view of rectangular section from
(b). Photographic resolution is limited by the size of bed grains, so we identify the approximate
red/blue interface with broken lines.

strip of islands. We emphasize that these are not transient effects: the recirculation
loops occur in steady, established, flow, and are identifiable only because we have
changed the colour of the grains in midstream.

It has been noted in previous work (Shinbrot et al. 1999; Taberlet et al. 2003;
Maneval et al. 2005) that granular flows near boundaries often do not faithfully
represent interior flows, and so, to reveal the transport internal to the bed, we solidify
the bed as follows. First, we stop the flow at a time of our choosing by rapidly bringing
the chute to a horizontal position. Inflowing (red) sand then spills over the chute near
its inlet, and the grains flowing down the chute stop very rapidly – from observation,
the grains seem to stop essentially immediately, and by raising the hinged chute
smoothly, no backflow or other spurious effects are evident. After stopping the flow,
we solidify the (now horizontal) bed by infiltrating it with a low-viscosity polymeric
solution (Rave R©, Unilever, Greenwich, CT), and then letting the polymer set over
a period of two weeks (Wightman et al. 1995). The solidified bed of sand is finally
removed, cut and labelled. In figure 7(b), we show a representative photograph of the
resulting cut section.

The flow patterns produced by this technique are probably not absolutely identical
with those that would be seen if the bed could be truly instantaneously frozen in
time. Nevertheless, the patterns of flow that we observe seem to reveal faithfully the
underlying behaviours that we seek to understand. In particular, as we will describe,
patterns of blue and red interfaces develop more detail at successive downstream
troughs in a way consistent with the assumption that similar, iterative, circulatory
flows (Shinbrot et al. 1999; Taberlet et al. 2003; Maneval et al. 2005) are present in
each trough.

Using this solidification technique, in figure 7(a) we show a view from the bottom
of the bed; this is a snapshot of the solidified mass after it has been lifted off of the
sinusoidal supporting plate – the valley of the sine is in the centre of the snapshot,
and peaks of the sine are at top and bottom. This particular snapshot is taken from
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the third well from the top, shortly after the red grains have fully extended along the
length of the chute. In this view, we can identify two features of interest: first,
the darker blue grains form multiple striations, suggesting that a repeated sequence
of processes has overturned the bed from top (red) to bottom (blue). Second, the
striations are significantly curved into ‘surrideos’ (smile-shapes). We indicate these by
green broken lines. This is as we would qualitatively expect for a flow that is nearly
stalled near the sidewalls and flows more rapidly toward the chute centreline. We will
simulate the apparent velocity field in the next section, and both of these facts will
come into play as we construct the simulation.

In another view in figure 7(b), we display the contents of a solidified well (the
seventh from the top of the chute) that has been sawn open to reveal the internal
structure of the bed. The bottom of the well is facing the camera, and one side-surface
is visible at the top of the snapshot. From this snapshot, it appears that a rounded
bolus of red grains projects into the bed of blue grains, evidently leaving a curved
interface in the cross-stream plane. Here again, the wells further down the chute have
more interfacial striations than the wells upstream, suggesting that projections form
within each well and are convected downstream. The precise details of the process by
which projections infiltrate and mix are clearly complex, as indicated in the enlarged
view in figure 7(c). Here we see that foliated striations (locations approximated by
grey broken lines) appear at the interface between red and blue regions, possibly as
a result of intermittent stick–slip motion (Shinbrot et al. 1999).

5.2. Velocity fluctuations

Granular flows tend to be somewhat noisy, and we did not obtain informative
data on velocity fluctuations using short-term measurements. Instead, we have
characterized temporal velocity fluctuations by comparing successive moving averages
from velocimetry data. For each of the flow regimes, we form differences between
successive average flows as follows. Using the surface velocimetry data from figure 5,
we define the 500-frame (1 s) velocimetry average from frame 1 to frame 500 (within
the fourth well from the top of the chute) to be V1, and the average from frame
501 to frame 1000 to be V2. We then define the sample velocity fluctuation to be
�V = V1–V2, which we plot as a function of position within the well in figure 8. We
see no significant temporal fluctuations for regular flow, but as shown in figure 8, we
do see fluctuations for examples of fully established antiregular and flat flows.

During flat flow (figure 8a), fluctuations remain small and broadly distributed, but
in each well, the surface does appear to slip uniformly downstream, slow, then slip
again. Thus, speed variations in figure 8(a) remain small except at the lower section
of the trough, where during this slip–slow cycle a slip motion in one well impinges
on a slower motion in the next. In antiregular flow (figure 8b), by contrast, we see
much more dynamic variations in velocity (note scale differences in figure 8). The
large peak in the lower region of the trough for this antiregular case corresponds to
local increases in speed that are associated with the circulatory flow highlighted in
the inset to figure 5.

6. Visualization
The experimental data for regular and flat flows reveal few surprises; regular flow is

steady and accelerates with the local slope of the chute bottom, hugging its sinusoidal
shape. Flat flow, by contrast, appears to fill in the troughs, and to exhibit a sliding sur-
face layer that slips and slows periodically, but is, by and large, mundane. Antiregular
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Figure 8. Sample velocity fluctuations between two successive seconds of PIV acquisition for:
(a) flat flow at 30.3◦ and (b) antiregular flow at 31.4◦. The highest peak in (b) correlates with
the presence of a transient circulation region (inset to figure 5) in this particular case.

flow, on the other hand, displays substantial transient accelerations (figure 8b) includ-
ing circulatory flows that sometimes emerge at the surface (figure 5). Averaged over
time, transport produces ‘surrideo’ patterns (figure 7) whose cause is not entirely clear-
cut. In this section, we seek to understand better how these patterns are produced. We
do this by constructing a Lagrangian flow simulation that permits us to visualize the
transport produced by the flow profiles implied by our experimental frozen sections.
It is difficult to model accurately granular flows that span kinetics from solid-like to
fluid-like (Campbell, Clearly & Hopkins 1995; Gray & Hutter 1997), and so instead,
in this simulation, we assume velocity fields that agree with observations and we track
markers under the influence of these fields. This is not a first principles simulation; it
is merely a visualization method that we use to provide an understanding of how the
internal flow seems to behave based on the fixed time snapshots that are attainable.

We generate transport simulations by advecting a plane demarking an imagined
interface in the granular bed using the following explicit velocity field, chosen to
correspond to data presented in figures 6 and 7:

Vx = V0

[
1 + 2(1 + z)

4
+ V2z|z − 1|

]
(1 − V1y

4), (4)

Vz = −V0(V2x|z − 1|)(1 − V1y
4). (5)

In these equations, V0,1,2 are constants (we use V0 = V2 = 0.1; V1 = 0.5 in figure 9),
and the coordinate system is as shown in figure 9(e), where x is in the streamwise
direction, z is vertical with z = 1 at the free surface of the bed. The effects of the
separate and combined terms in this velocity field are illustrated in figure 9.

In figure 9(a, b), we show how the first term in the Vx equation deforms an initial
plane of markers. This shear velocity field is chosen after quantitative simulations
performed elsewhere (Zheng & Hill 1996; Forterre & Pouliquen 2003). Similarly,
in figure 9(c), we show how the same initial plane of markers is deformed by the
quadratic flow on the right of equation (4), and in figure 9(d) we show the combined
effects of the shear of figure 9(b) and the quartic flow of figure 9(c). This quartic field
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Figure 9. Simulated Lagrangian flow used to visualize internal particle motion. (a–f )
Illustrations of how an initial plane of markers is transported by the assumed velocity
field. (a) Initial plane; (b) first part of assumed velocity: shear produced through drag against
the bottom of the chute; (c) second part of the assumed velocity: a quartic profile shown
deforming the initial plane of (a); (d) combined effects of shear and quartic flow; (e) combined
effects of shear and overturning described in text; (f ) combined effects of all of shear, quartic
flow and overturning on the initial plane of (a). At the right-hand side is the result of advecting
the plane of (a) through 24, 57 and 107 time steps under the combined effects of these flows.
The iterated ‘surrideo’ shape where the curved surface intersects with a horizontal plane is
identified at τ = 24; every time the bed turns over, this shape is re-introduced.

is chosen to correspond to the transport data shown in figure 7(a): the green dashed
line in this figure is such a quartic. The remaining terms in equations (4) and (5) define
a rotation meant to describe the iterative overturning of the bed seen in figure 6.

To illustrate how these flows would deform an initially vertical interface, at the
right-hand side of figure 9, we show the shape taken by the initial plane of figure 9(a)
after τ = 24, 57 and 107 time steps of Lagrangian transport. At τ = 24, we identify
the ‘surrideo’ shape that is iteratively repeated at later times (not shown to limit
clutter). From these Lagrangian transport simulations, we see that each time the bed
overturns under the influence of acceleration into and out of successive troughs, a
‘surrideo’ or smile shape is generated.

7. Conclusion
Our experiments indicate that the bifurcation identified in the nineteenth century

for fluid flows over a wavy bottom has a qualitative analogue in granular chute flows.
This analogue, however, comes with significant differences in detail. The first of these
details is that in the granular case, there are three, rather than only two, distinct
states: a flat state at shallow angles of incline; an antiregular state at intermediate
angles; and a regular state at the steepest angles. The flat state appears after the
trough between successive peaks fills with stalled grains, on which a shallow layer of
grains slides nearly uniformly. In this state, kinetic energy appears to be dissipated by
slow frictional contacts between the stalled layer beneath and the sliding layer above.
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The antiregular state, by contrast, appears from all evidence to be characterized by
circulatory flows, which dissipate energy through repeated overturnings of surface
layers into the bed. Finally, the regular state exhibits the most rapid mean velocity,
with little evidence of mixing, circulation or enduring sliding contacts.

A second major distinction between the fluid and granular transitions is that
the fluid transition appears in a solution for inviscid irrotational flow. In the fluid
case, regular flow appears at high Froude number and is kinetically driven, while
antiregular flow appears at lower Froude number and is driven by a reduction in
pressure where the fluid travels rapidly over the peak of a bottom waveform, and an
increase in Bernoulli pressure as the fluid travels more slowly over the trough. This
causes flow streamlines to converge near the peaks and to diverge near the troughs
of the bottom waveform.

By contrast, in the granular case, we know of no simple description that would
predict the presence of three distinct flow regimes or that would define the locations
of transition boundaries as shown in figure 4. It is dubious whether the Bernoulli
equation would ever apply, most notably since sheared grains dilate rather than
contract. Moreover, granular flows are strongly dissipative in general, and grains on
the wavy bottom are often partially or entirely jammed; additionally, we have shown
experimental evidence for significant circulatory flows in the granular case. On all of
these accounts, our granular flows are not well described by inviscid or irrotational
equations. Nevertheless, there appears to be fortuitous agreement between fluid and
granular transitions in flow over a wavy bottom that may give optimism for future
hydrodynamic treatments.

Beyond these results of fundamental interest, our results give rise to practical
conclusions as well. On the industrial side, our data indicate that either improved bed
agitation (in the antiregular state) or complete transport (in the regular state) can
potentially be achieved by designing chutes with suitable wavelengths, as informed
by figures 3(b) and 4(a). Additionally, on the geological side, the results suggest that
avalanches can display three predictable and distinct regimes of flow, and that by
evaluating (or designing) appropriate spacings between natural or artificial obstacles,
it may be possible to determine whether avalanches will jet kinetically downslope
(for larger spacings on steeper slopes) or overturn in dissipative circulatory loops (for
closer spacings). We await corroborating studies as the scale, geometry and materials
used are modified.

We thank S. Conway for help with velocimetry measurement, and M. Doumi,
N. H. Duong, L. Liwanag and L. Kwan for experimental support. This work was
partially supported by the NSF and the ACS-PRF.
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